

LNG on the Rails – Precursor to LH2 on the Rails?

© 2018 Chart Industries, Inc.

Innovation. Experience. Performance.®

Cryogenics on the Rails

LNG Fuel Tenders for fueling Locomotives:

Tank Cars for hauling Liquid Hydrogen, Ethylene and Ar/O2/N2 LNG by rail:

Tenders and Tank Cars

Progress Made / History

- Chart Active in Several Past and Present Tender and Transport Projects
 - 1961-present: AAR-204W and DOT-113 Tank Cars
 - Liquid Ethylene (flammable) in DOT-113 tank cars
 - Argon, Oxygen, Nitrogen (non-flammable) in AAR-204W and 113 cars
 - (1960s / 70s) Liquid Hydrogen 20 cars; Praxair (UCC) and Nasa
 - 1994: Union Pacific LNG Fuel Tender
 - 2012-2013: Canadian National LNG Fuel Tender
 - 2012-2017: Burlington Northern LNG Fuel Tenders
 - 2014: Chart 28,000 gallon tank car style tender
 - 2014: Transport Canada approves LNG by rail tank car and ISO
 - 2015-present: Chart ISO container style LNG Fuel Tenders in service
 - 2015: Alaska RR receives SP to carry LNG by rail in ISO containers
 - 2016: Alaska RR runs demonstration loads of LNG by rail AAR Petition for Rulemaking - LNG in DOT-113C120W tank cars
 - 2017: Extensive Use of tenders at FECR AAR NGFT Standards Published
 - 2018-2019: FECR LNG fuel tenders continue US DOT approval process moving forward (HM-264) for LNG TC

LNG on the Rails – Ready to Go!

28,000 Gallon (106 m³) Tank Car Style LNG Fuel Tender

11,000 Gallon (41.6 m³) ISO Container Style LNG Fuel Tender

Railroads are moving to LNG

Florida East Coast Railway locomotives from GE with LNG tender

- Chart LNG Fuel Tenders
 - Provide clean burning, domestically produced natural gas to one or two freight locomotives
 - displacing up to 80% of the diesel fuel required to power the locomotive.
- Chart LNG and Cryogenic Tank Cars

- WHY LNG as a Fuel:
- Lower cost than Diesel
- Cleaner burning
- Abundantly Available
- WHY LH2 as a Fuel:
- Very clean zero emissions
- Lower cost than diesel someday ?
- Abundantly Available
 - In water
 - In natural gas
 - As a by product....

Chart Cryogenic Tank Cars

Progress Made / History

- Chart Active in Several Past and Present Cryogenic Tank Car Projects
 - 1961-present: AAR-204W and DOT-113 Tank Cars

←34,500 Gallon (130.6 M3) DOT-113C120W Tank Cars for LNG, Liquid Ethylene or Liquid Ethane; LH2?

DOT-113A90W Tank Cars for Liquid Argon, Liquid Oxygen and Liquid Nitrogen \rightarrow

Chart Cryogenic Tank Cars

Chart teamed up with VTG, a leading rail logistic company, to develop cryogenic tank cars for the European network

Chart Vacuum Technology® provides the best insulation system to protect product loss and is at the core of why Chart is recognised as the premier supplier of cryogenic equipment solutions

1990's Burlington Northern

1994 Union Pacific

2012-13 Canadian National

Basic Operation:

- Mechanical and Electrical Connections between Locomotive and Tender
 - Locomotive sends a 'Gas Request'
 - Glycol supply and return within acceptable parameters
 - Pressurizing the gas supply system – for pump transfer, pressure transfer or 'economizer' transfer
 - "Tender Ready" signal is given and gas can be supplied to one or both locomotives

Basic Operation (continued):

- PLC system monitors pressures, temperatures, locomotive signals
- Safety systems shut down the tender when required
- HMI allows visualization and adjustment of operating parameters
- PLC can be connected to remote telemetry for 'back room' monitoring of tender status and performance

Chart LNG Fuel Tender Challenges

Structural challenges:

- Purpose Built Rail Wagon (similar in shape and appearance to a well car, but much, much more robust)
 - Excellent performance to date
 - Crashworthiness:
 - 45 MPH head on collision
 - 40 mph, 80,000 lb truck side impact
- Piping components; vacuum penetrations to tank
 - Several loss of vacuum incidents
 - But no direct loss of gas; no safety relief valve openings
 - Extended stem cryogenic valve leaks / failures
 - Pressure, temperature, flow component failures
 - 'breakaway' device failures
 - Piping cracks
- Telemetry alerts operating personnel to abnormal conditions
- Trained personnel address the issue prior to any significant gas loss

Chart LNG Fuel Tender Challenges

Operational challenges:

- Pumps not so simple to ramp up and down on demand with cryogenic liquids
- Pressure building low supply pressures; sloshing liquid; small lines
- Durability of PLCs; VFDs
- Operational coordination between tender and locomotive

Chart LNG Fuel Tender Challenges

Other challenges:

- Lack of familiarity with cryogenic fuels
 - LNG handles differently than diesel
 - LH2 can be even more different
 - Colder; wider flammability range; small molecule
 - Less dense; more buoyant; invisible flame
- New, additional safety training and emergency response personnel and equipment required. Table II: Physical and Combustion Property Values for Hydrogen and Methane.

Quantity	Hydrogen	Methane
Molecular Weight	2.016	16.043
Density of Gas at NTP, kg/m ³	0.08376	0.65119
Temperature to Achieve NTP Neutral Buoyancy in Air (1.204 kg/m ³), K	22.07	164.3
Normal Boiling Point (NBP), K	20	111
Liquid Density at NBP, g/L	71	422
Enthalpy of Vaporization at NBP, kJ/mole	0.92	8.5
Lower Heating Value, MJ/kg	119.96	50.02
Limits of Flammability in Air, vol%	4 - 75	5.3 - 15
Explosive Limits in Air, vol%	18.3 - 59.0	6.3 - 13.5
Minimum Spontaneous Ignition Pressure, bar	~ 41	~ 100
Stoichiometric Composition in Air, vol%	29.53	9.48
Minimum Ignition Energy, J	0.02	0.29
Flame Temperature in Air, K	2318	2148
Autoignition Temperature, K	858	813
Burning Velocity in NTP Air, m/s	2.6 - 3.2	0.37 - 0.45
Diffusivity in Air, cm ² /s	0.63	0.2

LNG & CNG Vehicle Fueling

LNG & CNG Vehicle Fueling

LNG compared to CNG – Heavy Duty Applications

- Highest energy density
 - Less space & weight required
 - Longer driving range
- Faster filling speeds
- Easily scalable infrastructure
- Lower maintenance/ongoing costs
 - Longer tank life expectancy
- Lower electricity costs at fuel stations

LCNG Option

Comparing to Hydrogen

Most Natural Gas fueling is done via pumping

Most Hydrogen fueling today is done via pressure transfer

- Bulk transfer of GH₂ and LH₂
- On-road H₂ stations have pumps/compressor(s) that slowly fill high-pressure buffer tanks, but flow through dispenser is PT
- Current pumps/compressors are too slow for direct fueling
- Challenges with speed of fill and gas temperature
- Physical properties of H₂ make it difficult to pump

But fewer LH₂ pump options than GH₂ compression options

Comparing to Hydrogen

Hydrogen rail fueling possibilities:

 LH_2 tenders

Use bulk trailers or tanks to fuel – Pump or PT

GH₂ tenders

Use tube trailers – PT

Or possibility of a "L-GH₂" fuel station? – Pump

Thank you for your attention.

If you have further questions or comments, please contact us directly:

Scott Nason Product Mgr - Rail Products Group Chart Inc., D&S West <u>scott.nason@chartindustries.com</u> 603-912-5428 Office 603-793-1595 mobile Reid Larson Product Mgr – Fueling Systems Chart Inc., D&S West reid.Larson@chartindustries.com 952-687-7857 mobile

www.ChartLNG.com

Comparing to Hydrogen

Table II: Physical and Combustion Property Values for Hydrogen and Methane.

Quantity	Hydrogen	Methane
Molecular Weight	2.016	16.043
Density of Gas at NTP, kg/m3	0.08376	0.65119
Temperature to Achieve NTP Neutral Buoyancy in Air (1.204 kg/m ³), K	22.07	164.3
Normal Boiling Point (NBP), K	20	111
Liquid Density at NBP, g/L	71	422
Enthalpy of Vaporization at NBP, kJ/mole	0.92	8.5
Lower Heating Value, MJ/kg	119.96	50.02
Limits of Flammability in Air, vol%	4 - 75	5.3 - 15
Explosive Limits in Air, vol%	18.3 - 59.0	6.3 - 13.5
Minimum Spontaneous Ignition Pressure, bar	~ 41	~ 100
Stoichiometric Composition in Air, vol%	29.53	9.48
Minimum Ignition Energy, J	0.02	0.29
Flame Temperature in Air, K	2318	2148
Autoignition Temperature, K	858	813
Burning Velocity in NTP Air, m/s	2.6 - 3.2	0.37 - 0.45
Diffusivity in Air, cm ² /s	0.63	0.2

Higher NER with Hydrogen vs. LNG

Liquid air formation on uninsulated Liquid Hydrogen lines